Archives for category: gas fields

Venezuela has the world’s largest proven oil reserves and is one of the founding members of OPEC. Despite this, their 2.5m bpd of oil production accounts for only 3% of global output. Venezuelan oil production declined over the last decade owing to complex geology and a difficult investment climate. However, several large IOC-operated gas fields offshore Venezuela could now offer some positivity.

The Hydrocarbon El Dorado

Venezuela’s 300bn bbl of oil reserves account for 18% of current global reserves. But 220bn bbls of these reserves are onshore in the Faja, or Orinoco heavy oil belt, which has produced around 1.3m bpd in recent years. Venezuelan heavy oil grades are a key part of world oil supply: many US refineries were designed to take its heavy grades of oil together with lighter Arab crudes, meaning the country is also important for the tanker market. But production from the Faja is expensive and technically challenging, and heavy crudes sell at a discount.

Making Heavy Work Of It

After the election of Hugo Chávez in 1999, Venezuela’s oil industry came under strain as social policies were funded by oil revenues, and reinvestment declined. After the 2003 general strike, 19,000 PDVSA employees were fired and replaced with government loyalists. Furthermore, in 2007, the government looked to capitalize on the high oil price environment by nationalizing international oil companies’ (IOCs’) assets.

Offshore production was always the minor fraction of Venezuela’s output (23%). However, lack of investment in maintenance hit it hard. This was particularly true of the very shallow water production in Lake Maracaibo, which has seen drilling for more than a century. Issues of pipeline leakage and even oil piracy on the lake helped production there decline. In total, output from the Maracaibo-Falcon basin (not exclusively offshore) fell 35% between 2008 and 2015. In total, offshore production is estimated to have dropped by about 38% to 0.57m bpd.

A Brighter And Lighter Future

The current political and fiscal situation in Venezuela offers little suggestion that it will be easy to arrest decline. However, a more permissive attitude to foreign investment may help. In October, agreements were signed to allow Chinese and Bulgarian investment to fund repairs offshore Lake Maracaibo. Perhaps more significant is the promise of gas, where greater IOC participation is permitted.

Trinidad, Venezuela’s very close neighbour, tripled their offshore production from 1998-2005. Venezuela has begun to make moves in the same direction, firstly via the Cardon IV project. The first field here, Perla, started up in 2015 run by an Eni-Repsol joint venture. As the graph shows, this has already had a small, but visible effect on Venezuelan gas output. Perla has reserves of 2.85bn boe and by Phase 3 is set to be producing 1.2 bcfd. This is likely to be added to from 2019 by up to 1 bcfd of output from the long-delayed Mariscal Sucre fields.

So, Venezuela has vast reserves but production has been falling. The political situation, combined with low oil prices, is likely to hinder any rapid turnaround in oil output. However, although progress has been slow, IOC involvement has at least provided some positive impetus for gas production offshore Venezuela.

OIMT201706

Advertisements

Natural gas is set to account for an increasing share of the global energy mix in coming years, with gas consumption growing by an average of around 1.5%-2% a year out to 2040, according to energy forecasting agencies such as the IEA. And based on recent trends, if the consensus views on natural gas prove accurate, the implications for the offshore and LNG carrier fleets are likely to be significant.

Stepping On The Pedal

In 2016, global natural gas demand stood at an estimated 347bn cfd, up by 24% on the 280bn cfd consumed in 2006. Demand for natural gas in recent years has been driven by industrialisation in developing economies (Chinese gas demand, for example, grew at a CAGR of 13% in 2006-16) and environmental concerns the world over. Historically, the majority of trade in natural gas has been by pipeline, for instance from Eurasia to Europe. In 2015, pipelines still accounted for 68% of natural gas volumes moved globally.

However, liquefied natural gas (LNG) has become an increasingly important form in which gas is traded, even given the costs of complex liquefaction and regasification facilities. Over 50% of existing nameplate liquefaction capacity at LNG export terminals (349mtpa globally) has come online since 2005. As a corollary, from start 2006 to start March 2017, the LNG carrier fleet increased from 193 to 479 vessels and tripled in total capacity to 70.2m cubic metres of LNG.

Shifting It Up A Gear

Growth in the seaborne LNG trade is in turn closely linked with growth in offshore gas production, as major LNG exporters such as Qatar and more recently Australia use offshore gas fields to provide feedstock to LNG trains. Qatar accounted for 30% of LNG exports and 22% of existing liquefaction capacity in 2016, all fed via offshore gas, mostly from the giant North Field. In 2006, offshore fields accounted for 28% of global gas production and by 2016, 31%. This is set to rise to 32% (119bn cfd) in 2017, mainly due to field start-ups off Australia that are to feed LNG projects like Wheatstone. Finding, developing and supporting offshore gas fields on Australia’s NW Shelf has created demand for a range of vessels from the offshore fleet of over 13,500 units.

More Gas In The Tank

The exploitation of these remote reserves has also spawned the FLNG concept – vessels that can be used to exploit otherwise stranded gas. The LNG markets are clearly challenged at present but in the long term, planned FLNG projects in Australia, Mozambique, Tanzania, Mauritania and other areas could potentially sustain offshore gas production growth. Another major source of gas production growth has been the US shale gas sector, where production rose from 4bn cfd in 2007 to 48bn cfd in 2016. The US accounts for over 50% of liquefaction capacity under construction (while some planned projects entail liquefaction of shale gas on near-shore FLNGs) and is set to become a major LNG exporter in coming years.

So offshore gas production has grown as a share of total global gas production, as has US shale gas. Both trends can create opportunities for LNG and offshore vessels. And if, in line with consensus expectations, gas continues to grow as a share of the energy mix, then these trends may have a long and interesting road ahead.

SIW1265:Global Natural Gas Production And LNG Export Capacity

The African continent accounts for 16% (490) of active offshore fields and 17% (535) of offshore fields that are either under development or are potential developments globally. It is also home to key offshore exploration frontiers. However, the nature of E&P activity varies widely across the continent, as is clear from analysing the offshore areas into which Africa can be divided: North, South, East and West Africa.

North Africa: Old Fields?

A total of 217 oil or gas fields are located offshore North Africa, of which 112 are in production (95% in shallow waters). In this mature area, offshore oil production is projected to stand at 0.34m bpd in 2016, down 37% on the area’s peak of 0.54m bpd in 1991. Bar the possible restoration of offshore oil production lost in the “Arab Spring”, decline is set to continue. However, North African offshore gas production still has significant growth potential, forecast as it is to grow with a CAGR of 8.4% from 4.29bn cfd in 2016 to stand at 8.86bn cfd in 2025. This projected growth is driven by gas projects such as Zohr Ph.1 ($3.5bn; 1bn cfd) and Ph.2 ($10bn; 7bn cfd). The Zohr field, a frontier find in a water depth of 1,450m in the Levantine Basin, exemplifies the ongoing rise of deepwater E&P in the area.

South Africa: Few Fields

South African offshore production is minute in a global context. The area is home to just 17 offshore fields (only seven active, two having shut down in 2013). Although not without potential, E&P in the area has stalled in the downturn, as IOCs have cut and reprioritised E&P spending.

East Africa: New Fields

Unlike North and West Africa, East Africa has little history of offshore E&P: 88% of the area’s 41 offshore fields were discovered after 2009. The average water depth of these “frontier” finds is 1,570m and 92% are gas fields (with total reserves of more than 168 tcf). Offshore gas production in the area is projected to hit 2.82bn cfd in 2025 (from 0.13bn cfd in 2016) as fields are developed as part of LNG projects such as Coral FLNG Ph.1 ($7bn; 0.433bn cfd). However, further FID slippage at these frontier projects is a risk in the weaker energy price environment.

West Africa: Costly Fields?

West Africa constitutes one corner of the ‘Golden Triangle’ of deepwater E&P: of the 368 active fields in the area, 83% are in shallow waters (in the Gulf of Guinea and Angola) but 43% of 364 potential developments are in depths of more than 500m. The area has major deepwater production growth potential, even though it already accounted for 17% (4.35m bpd) of global offshore oil production in 2015. However, West Africa is a key offshore ‘swing’ region in terms of CAPEX and production: planned FPSO hubs such as MDA (Angola) tend to have high breakevens (c.$70/bbl+), so project FIDs have been scant since 2014. Frontier finds from Ghana up to Mauritania (39 since 2009) could yield more viable production growth though, and exploration in these waters has continued in the downturn.

In conclusion then, the African continent is home to a range of offshore field and project trends. Although there are some similarities across the continent in terms of “frontier” E&P, water depths and other factors, to get a grip on African offshore E&P, it is necessary to take the full range of available data and “drill down” into it.

OIMT201611